Acoustical evaluation of a novel flute head construction

Péter Rucz

rucz@hit.bme.hu

DAGA 2018 44. Jahrestagung für Akustik Paper ID: 485

Introduction

Modern western flute design

- Based on Theobald Boehm's design from the mid-19th century
- Minor improvements by different instrument makers
- Novel flute head
 - Patented by an expert flutist
 - Revised geometry of the tuning plug
 - New materials: bone, wood, metals
 - Observation: both material and shape significantly affect the timbre
- Acoustical analysis
 - Recordings in semi-anechoic chamber
 - Objective evaluation of recordings
 - Acoustical model

P Rucz

Technical University of Budapest

The new tuning plug and flute head

- Front plate of tuning plug is curved or conical
- Various materials: bone, cocobolo wood, metals and alloys
- Numerous tuning plug and crown plug combinations

P. Rucz	Acoustical evaluation of a novel flute head construction		
Technical University of Budapest	DAGA 2018, Paper #485	March 22nd, 2018.	3 / 16

Measurements

- Trevor James Cantabile silver plated concert flute
- 6 flute heads, 37 notes held steady, *piano & forte* dynamics
- 2 nearfield and 2 farfield 1/4'' microphones
- \blacksquare \sum 444 recordings, each containing 3 samples of the same note

P. Rucz

Acoustical evaluation of a novel flute head construction

Signal processing

- 1 Automatic segmentation
 - Using r.m.s. of signal
 - Segments differ significantly along the chromatic scale
- 2 Pitch analysis
 - Mean fundamental f_1
 - Small fluctuations
 - Temporal statistics
- 3 Resampling
- 4 Steady state evaluation
 - Loudness
 - Spectrum
 - Spectral centroid
- 5 Attack analysis
 - Order of harmonics
 - Attack speed

Segmentation of A1 piano (steel plug)

Segmentation of H3 piano (steel plug)

Acoustical evaluation of a novel flute head construction

Technical University of Budapest

P. Rucz

DAGA 2018, Paper #485

March 22nd, 2018

Pitch analysis

Typical result of the steady state pitch analysis

Box plot

- Thick: mean
- Boxes: quartiles
- Thin: min & max

- Comparison with a fitted tempered scale
- piano: below, forte: above the fitted scale
- The 3rd register is hard to play, notes are hard to hold steady

Equivalent loudness

Dynamics	f/p [dB]		
Register	1st	2nd	3rd
Steel	9.3	6.2	6.6
Cocobolo	7.8	5.8	7.0
Bone	6.8	5.3	4.8
Silver	9.7	5.4	5.2
Titanium	7.8	5.7	5.9
Traditional	8.5	5.7	5.7

- General observations
 - Level jumps between consecutive registers
 - Due to differences in blowing strength (overblowing)
- Novel flute head
 - The achieved *forte* to *piano* ratio is slightly increased (steel or silver plugs) or decreased (bone plug)

Stationary spectra – examples

- Significant differences of spectral envelopes and harmonic content
- Greatest observable deviations in the 1st register

P. Rucz	Acoustical evaluation of a novel flute head construct		
Technical University of Budapest	DAGA 2018, Paper #485	March 22nd, 2018.	8 / 16

Spectral centroid

Dynamics	Pia	Piano		Forte	
Register	1st	2nd	1st	2nd	
Steel	1.42	1.20	2.38	1.33	
Cocobolo	1.36	1.22	2.26	1.38	
Bone	1.33	1.17	2.12	1.28	
Silver	1.22	1.18	2.30	1.34	
Titanium	1.39	1.18	2.31	1.28	
Traditional	1.22	1.21	2.16	1.41	

- Enhanced harmonic content: steel, cocobolo, titanium plugs
- Less harmonics: bone plug

- Large variation of centroid along the scale
- Certain notes have remarkably different centroids than neighbors
 - Silver plug: A#1, F#2, other plugs: F2

Resampled signal

- Allows coherent sampling
- Resolution in t and f
- Spectral leakage avoided
- Time history of harmonics
- Difficulties
 - Consecutive attacks can be remarkably different
 - Fastest attack evaluted
- Observations
 - Greatest differences for F#1
 - Attack very slow with traditional plug, strong 5th harmonic appears

Attack of the $F\#1\ \textit{piano}$ note

Acoustical evaluation of a novel flute head construction

DAGA 2018, Paper #485

Acoustical waveguide model of the flute

- Model components
 - Bore sections
 - 2 Open / closed toneholes
 - 3 Radiation impedances (Length corrections)
- Input admittance $Y_{
 m in}(f)$
 - Natural resonances
 - Harmonicity

Acoustical evaluation of a novel flute head construction

Technical University of Budapest

P. Rucz

DAGA 2018, Paper #485

March 22nd, 2018

Length correction at the embouchure

P. Rucz

DAGA 2018, Paper #485

Effect of tuning plug on harmonicity

- Harmonic content of sound ~ harmonicity of resonator [2]
 - Modes are stretched (C1)
 - Or compressed (G1)
- Normalized stretching

$$\operatorname{Str}(n) = \frac{f_n}{nf_1} - 1$$

- Does $\Delta L = \text{const}$ lead to the best harmonicity?
- Novel design gives similar harmonicity, less sensitive
- Embouchure impedance [3]
 - Affected by player
 - Varies along the scale [4]
 - Limiting factor

Acoustical evaluation of a novel flute head construction

Technical University of Budapest

P Rucz

DAGA 2018, Paper #485

March 22nd, 2018

Summary

- Novel flute head
 - New shape of tuning plug, combined with various crowns
 - Various materials used: wood, metals, alloys
- Measurement results
 - Significant differences in steady state spectra
 - Analyzed: loudness, spectral centroid, attack transient
 - Perceived sound quality affected by novel tuning plugs
- Acoustical waveguide model
 - Length corrections and harmonicity of novel and traditional designs
 - Limiting factor: embouchure impedance model
- Music sample main theme from Ravel's Bolero Played on traditional and three different novel flute heads

Acknowledgments

Zoltán Lakat (Expert flutist, patent holder of construction)

Thank you for your kind attention!

P. Rucz

Acoustical evaluation of a novel flute head construction

Technical University of Budapest

DAGA 2018, Paper #485

- N.H. Fletcher, T.D. Rossing. *The physics of musical instruments*. Springer, New York. Chapter 16. (1991)
- [2] P. Rucz et al. Sound design of chimney pipes by optimization of their resonators. JASA 133 pp. 529–537 (2013)
- [3] J. Wolfe et al. Acoustic impedance spectra of classical and modern flutes. JSV **243** pp. 127–144 (2001)
- [4] P.A. Dickens. *Flute acoustics: measurement, modelling and design* Ph.D. thesis, University of New South Wales (2007)